Mixed Oxides of Titanium and Niobium. I.*

By A. D. Wadsley
Division of Mineral Chemistry, C.S.I.R.O. Chemical Research Laboratories, G.P.O. Box 4331, Melbourne, Australia

(Received 17 August 1960)
$\mathrm{TiNb}_{2} \mathrm{O}_{7}$ crystallizes as monoclinic needles, space group $A 2 / m$, and with the unit-cell dimensions

$$
a=11.93, b=3.81, c=20.44 \AA ; \beta=120^{\circ} 10^{\prime}
$$

The structure, solved by a trial-and-error procedure and then refined by Fourier methods, contains a random distribution of both Ti and Nb in the metal positions of an octahedral structure of a new kind.

Introduction

The existence of series of metallic oxides which are closely related to one another, chemically and structurally, is now well recognized. A particular series is derived from a simple structure by the reduction of the valency of the metal ion, and this is reflected in each member by features which are common to all of them. Perhaps the best known is the series (W, Mo) ${ }_{n} \mathrm{O}_{3 n-1}$ based upon the ReO_{3} type lattice (Hägg \& Magnéli, 1954) in which n can have values from 8 to 14 inclusive, and $\mathrm{Ti}_{n} \mathrm{O}_{2 n-1}(4 \leq n \leq 10$; Andersson, Collén, Kuylenstierna \& Magnéli, 1957a, b) and the related compounds which are derived from the rutile form of TiO_{2}.
Ti^{4+} and Nb^{5+} are ions which can be expected to substitute isomorphously for one another in crystalline solids; they have approximately the same ionic radii, and both form bonds to oxygen which are predominantly octahedral. Two intermediate compounds which were found in the system $\mathrm{TiO}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Roth \& Coughanour, 1955) were considered likely to be members of a structural series, and the crystal structure of one of them, $\mathrm{TiNb}_{2} \mathrm{O}_{7}$, is now described. An examination of the other is reported in the following paper (Wadsley, 1961).

Experimental

$\mathrm{TiNb}_{2} \mathrm{O}_{7}$ is readily prepared by the reaction in the solid state of equimolar proportions of reagent grade TiO_{2} and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ from temperatures of $1000^{\circ} \mathrm{C}$. up to the solidus. It melts congruently at about $1500^{\circ} \mathrm{C}$. and forms transparent yellow monoclinic needles on cooling. The unit-cell dimensions, determined from a

[^0]powder pattern taken with a Guinier-type focusing camera were
$$
a=11.93, b=3.81, c=20.44 \AA, \beta=120^{\circ} 10^{\prime}
$$

The systematic absences, $h k l$ with $k+l \neq 2 n$, gave the space group alternatives $A 2 / m, A 2$ or $A m$. With six formula units in the unit cell, the calculated density is $4.29 \mathrm{~g} . \mathrm{cm} .^{-3}$ which may be compared with the value $4 \cdot 25 \pm 0 \cdot 05$ g.cm. ${ }^{-3}$ measured on a torsion microbalance. Dyson (1957), who determined the dielectric properties and lattice constants of $\mathrm{TiNb}_{2} \mathrm{O}_{7}$, gave figures corresponding to these, but the side-centring was overlooked. His suggestion of four formula units for his unit cell led to poor agreement between the density values.

Intensity data were recorded by the multiple film technique with molybdenum radiation. The $h 0 l$ reflexions were collected with an integrating Weissenberg goniometer, and measurements made with a standard series of spots of the same shape and size, obtained with the direct beam suitably reduced in intensity and appropriately masked. The $h 1 l$ and $h 2 l$ series were recorded without integration. The measurements were all reduced to the $|F|$ terms with the usual correction factors, specimen absorption being neglected. Structure factors were computed with the Nb^{5+} scattering curve derived from the tables of Thomas \& Umeda (1957), Tia ${ }^{4+}$ from Qurashi (1954) and O^{2-} from Viervoll \& Øgrim (1949). These were eventually modified by an overall isotropic temperature factor $B=1 \cdot 19 \AA^{2}$ obtained experimentally. Calculations were made on SILLIAC at the University of Sydney through the courtesy of Dr J. E. W. L. Smith.

Structure determination

The distribution of $h 0 l$ and $h 2 l$ intensities, with due regard for observational errors and for the effects of

Table 1. Observed and calculated structure factors

$h k l$	F_{o}	F_{c}	$h k l$	F_{o}	F_{c}	$h k l$	F_{0}	F_{c}	$h k l$	\boldsymbol{F}_{0}	F_{c}
100	15.5	$\overline{21} \cdot 9$	308	26.9	$\overline{29} \cdot 0$	$\overline{60}, 16$	$17 \cdot 6$	$\overline{20} \cdot 1$	$\overline{2} \overline{1} 5$	78	53
200	65.8	$51 \cdot 6$	108	$16 \cdot 7$	$\overline{16} \cdot 4$	$\overline{7} \overline{0}, 16$	$35 \cdot 2$	$30 \cdot 1$	$\overline{3} 15$	29	$\overline{3} \overline{2}$
300	119.0	116.7	008	$12 \cdot 7$	11.9	$\overline{8} \overline{0}, 16$	$36 \cdot 2$	$26 \cdot 3$	$\overline{415}$	49	34
400	$33 \cdot 1$	$\overline{3} \overline{8} \cdot 5$	$\overline{10} 8$	$12 \cdot 1$	$\overline{8} \cdot 7$	$\underline{1} \mathbf{0}, 0,16$	$54 \cdot 7$	$50 \cdot 9$	515	27	24
500	$113 \cdot 7$	$127 \cdot 5$	$\overline{20} 8$	$33 \cdot 1$	27.5	$\overline{1} \overline{3}, 0,16$	$37 \cdot 7$	$38 \cdot 0$	715	64	84
600	$52 \cdot 2$	$48 \cdot 8$	$\overline{30} 8$	$21 \cdot 9$	18.0	$\overline{16}, 0,16$	$25 \cdot 0$	$26 \cdot 3$	$\overline{1} \overline{0}, 15$	52	48
800	$68 \cdot 6$	$73 \cdot 2$	$\overline{5} \overline{0} 8$	$24 \cdot 1$	$\underline{2} \overline{3} \cdot 4$	20,22	$25 \cdot 0$	$20 \cdot 6$	217	17	18
11,00	$51 \cdot 6$	$51 \cdot 8$	$\overline{80} 8$	$31 \cdot 5$	$\overline{28} \cdot 1$	$\overline{10}, 2,2$	$39 \cdot 9$	$44 \cdot 7$	$\overline{5} 17$	19	24
14,00	$30 \cdot 9$	$29 \cdot 7$	$\overline{90} 8$	$17 \cdot 0$	15.5	$\underline{4} \overline{0}, 2,2$	$43 \cdot 3$	$47 \cdot 8$	817	25	17
502	$22 \cdot 6$	$\overline{24} \cdot 3$	11,0,10	$26 \cdot 3$	$27 \cdot 2$	600,2,2	$36 \cdot 8$	$36 \cdot 4$	$\overline{10} 17$	26	19
202	$12 \cdot 1$	16.5	8,0,10	$38 \cdot 9$	$43 \cdot 1$	$\overline{7} \overline{0}, 2,2$	$36 \cdot 8$	$39 \cdot 8$	81,11	26	27
002	$11 \cdot 4$	$10 \cdot 8$	5,0,10	$50 \cdot 4$	$47 \cdot 3$	$\overline{9} \overline{0}, 2,2$	$46 \cdot 1$	$45 \cdot 9$	71,11	26	28
$\overline{1} 02$	16.7	$16 \cdot 4$	3,0,10	$37 \cdot 7$	$39 \cdot 9$	120,2,2	$46 \cdot 1$	$48 \cdot 1$	51,11	44	52
704	$30 \cdot 6$	$27 \cdot 2$	2,0,10	$64 \cdot 0$	$67 \cdot 3$	$\overline{15} 0,2,2$	$30 \cdot 9$	$27 \cdot 8$	21,11	79	87
404	51.9	$48 \cdot 3$	1,0,10	$21 \cdot 3$	$21 \cdot 0$				$\overline{01}, 11$	49	42
204	$15 \cdot 8$	19.5	0,0,10	$68 \cdot 3$	$70 \cdot 3$	811	31	28	11,11	55	$\frac{60}{33}$
104	$33 \cdot 1$	24.9	$\overline{10}, 10$	$27 \cdot 2$	$22 \cdot 7$	511	57	59	$\overline{1} \overline{1}, 11$	28	$\overline{3} \overline{3}$
004	$17 \cdot 6$	$\overline{15} \cdot 4$	$\overline{3} \overline{0}, 10$	$105 \cdot 4$	119.5	411	15	$\overline{12}$	З $\overline{1}, 11$	94	108
$\overline{104}$	$49 \cdot 8$	$54 \cdot 4$	$\overline{40}, 10$	$16 \cdot 4$	$15 \cdot 4$	311	23	26	41,11	30	32
$\underline{204}$	$13 \cdot 0$	$10 \cdot 4$	50, 10	$30 \cdot 9$	$30 \cdot 9$	211	31	40	61,11	84	87
$\overline{4} \overline{0} 4$	28.7	$28 \cdot 1$	$\overline{60}, 10$	$67 \cdot 5$	60.5	111	23	$\overline{27}$	81,11	34	39
704	$21 \cdot 0$	$18 \cdot 3$	$\overline{70}, 10$	$21 \cdot 3$	$\overline{21} \cdot 2$	011	*	79	91,11	72	68
12,06	$25 \cdot 0$	$26 \cdot 5$	$\overline{8} \overline{0}, 10$	$62 \cdot 1$	$65 \cdot 1$	$\underline{11} 1$	*	33	$\underline{10} 1,11$	26	$\overline{2} \overline{6}$
906	$37 \cdot 1$	38.7	$\overline{9} \overline{0}, 10$	$17 \cdot 3$	$20 \cdot 1$	$\underline{2} 11$	9	12	11,1,11	36	42
706	$26 \cdot 6$	28.8	$\overline{1} \overline{1}, 0,10$	$38 \cdot 3$	$38 \cdot 7$	$\overline{3} \overline{1} 1$	47	62	$\underline{12} \mathbf{1}, 1,11$	25	30
606	$28 \cdot 1$	$27 \cdot 0$	14,0,10	$22 \cdot 6$	$22 \cdot 7$	$5 \overline{1} 1$	25	25	14,1,11	36	27
506	$16 \cdot 4$	$22 \cdot 1$	2,0,12	$27 \cdot 5$	$30 \cdot 3$	611	58	64	11,15	26	31
406	$61 \cdot 2$	$65 \cdot 7$	$\overline{10}, 12$	$34 \cdot 3$	$40 \cdot 7$	711	23	$\overline{2} \overline{2}$	01,17	25	26
306	31.5	$24 \cdot 4$	$\overline{30}, 12$	$32 \cdot 8$	$33 \cdot 2$	$\overline{8} \overline{1} 1$	31	26	21,17	44	31
106	$70 \cdot 2$	$65 \cdot 1$	$\overline{4} \overline{0}, 12$	$34 \cdot 3$	$36 \cdot 4$	$\overline{91} 1$	26	32	51,17	58	51
006	10.8	$\overline{17} \cdot 4$	$\overline{6} \overline{0}, 12$	40.5	$39 \cdot 2$	11,11	36	40	$\overline{81} 17$	41	44
$\overline{1} 0$	$37 \cdot 1$	$32 \cdot 2$	$\overline{9} \overline{0}, 12$	$42 \cdot 7$	$43 \cdot 3$	14,11	26	30	$\overline{1} \overline{0}, 1,17$	36	33
$\overline{2} \overline{0} 6$	$95 \cdot 8$	98.8	$\overline{1} \overline{2}, 0,12$	$28 \cdot 7$	$27 \cdot 3$	$\underline{1} 1$	37	$\overline{4} \overline{5}$	111,17	25	27
$\overline{30} 6$	$25 \cdot 7$	$\overline{26} \cdot 9$	14, 0,12	$22 \cdot 6$	$19 \cdot 2$	613	22	$\overline{28}$	$\overline{1} \overline{3}, 1,17$	31	37
$\overline{4} 0$	$46 \cdot 4$	$35 \cdot 2$	$\overline{17}, 0,12$	26.3	$19 \cdot 2$	12,15	29	34	21,21	32	34
506	47.9	$45 \cdot 2$	9,0,16	$27 \cdot 8$	$26 \cdot 4$	10,15	30	23	11,21	36	47
$\overline{6} \overline{0} 6$	$19 \cdot 2$	$\overline{2} \mathrm{I} \cdot 0$	6,0,16	$34 \cdot 3$	$39 \cdot 2$	915	43	38	41,21	25	35
$\overline{7} 06$	$82 \cdot 5$	$85 \cdot 3$	4,0,16	$22 \cdot 3$	$25 \cdot 4$	715	62	54	61,21	44	51
$\overline{10}, 06$	$57 \cdot 8$	57.8	3,0,16	$21 \cdot 3$	$24 \cdot 5$	415	104	85	$\overline{9} 1,21$	36	42
$\overline{1} \overline{2}, 06$	$20 \cdot 7$	$21 \cdot 0$	1,0,16	$48 \cdot 2$	$55 \cdot 4$	215	26	23	12,1,21	26	29
$\overline{13}, 06$	$34 \cdot 9$	$37 \cdot 6$	0,0,16	$23 \cdot 2$	$15 \cdot 6$	115	49	36	51,27	27	23
$\overline{14}, 06$	$23 \cdot 2$	$\overline{19} \cdot 7$	$\overline{20}, 16$	$50 \cdot 4$	$54 \cdot 4$	015	26	$\overline{2} \overline{8}$	81,27	32	34
$\overline{15}, 06$	$24 \cdot 4$	$24 \cdot 1$	$\frac{40}{4}, 16$	$24 \cdot 4$ $62 \cdot 4$	$\begin{aligned} & 25 \cdot 6 \\ & 60 \cdot 5 \end{aligned}$	$\overline{115}$	73	58	11,1,27	27	33

thermal motion, were identical. All the atoms comprising the structure were therefore situated in, or very close to, two planes normal to the y axis and $b / 2 \AA$ apart, making $A 2 / m$ the most probable space group. Since there are six formula units, the atoms must be in both fourfold and twofold sites, and one of the latter can be the origin. The Patterson function will therefore contain within it direct evidence of the detailed structure.

The projection $P(u, w)$ consisted essentially of strong positive regions parallel to the z direction and centred in the sections $x / a=0$ and $\frac{3}{8}$. Betwcen these, at $x / a=\frac{7}{32}$ and $\frac{1}{2}$ and also parallel to z were smaller positive ridges. Analytical methods of solving this problem proved to be inconclusive, and a simple trial-and-error procedure which was adopted was more successful.

Octahedra may share corners to form an endless linear string (Fig. l(a)) or edges to form a zig-zag
string (Fig. 1(b)), and the structure of many metallic oxides consist of these two kinds of simple unit grouped together in various ways. For $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ the numerical value $a \sin \beta$ is almost identical with the distance $c / 2$. If the metal-oxygen bond distance is assumed to be $2.0 \AA$, then five octahedral diameters are equal in length to the c axis, and $2 \frac{1}{2}$ to the height of the unit cell, $a \sin \beta$. With the additional criteria provided by the space group, by the numbers of atoms within the unit cell, and with the Patterson function, it was a matter of trial with the units of Fig. 1 to find an arrangement which was satisfactory. The ideal parameters of the model selected by this means are given in Table 3.

Oxide structures, however, are seldom, if ever, ideal at room temperature as the metal atoms can introduce distortions in one of two ways.
(a) If they have an excess of valency electrons, they

Fig. 1. Octahedra joined by corners (Fig. l(a)) and edges (Fig. $l(b)$) to form endless strings, linear and zig-zag respectively. In perspective (upper) and as seen in projection (lower).
may attract one another to form short bonds (Marinder \& Magnéli, 1957). In its ideal form Fig. $1(b)$ does have such a short distance.
(b) If the valencies are satisfied, the metals may repel one another if they are strongly ionized (Wadsley, 1955).
$\mathrm{TiNb}_{2} \mathrm{O}_{7}$ crystals are pale yellow and valency anomalies should not exist. For the trial structure it was assumed that the metals of the more closely coordinated polyhedra are moved $0.4 \AA$ from the octahedral centres and away from one another. This would undoubtedly influence the positions of some of the oxygens, but no additional assumptions were made at that stage.

The proposed structure made it possible to provide special positions for both kinds of metal atom. With Ti occupying sites 1 and $2, \mathrm{Nb} 3,4$ and 5 , the discrepancy factor for the $h 00$ reflexions was 37%. By assuming random occupancy, the figure dropped to 15% and it was clear, therefore, that there was little or no difference between the scattering of any of the metal atom positions. The model was then refined by

Fig. 2. Electron density projection onto (010) in which the contributions of the metals, the positions of which are shown as small black circles, were subtracted from the observed data. This shows the oxygens, drawn at intervals of 2 e. \AA^{-2}.

Fourier projections on (010) assuming the plane group $p 2$, the summations being successively $F_{o}, F_{o}-F_{\text {metals }}$ (Fig. 2) and finally $F_{o}-F_{c}$ until there was no detectable improvement.

The experimental data contain many non-systematic absent reflexions, and no attempt was made to introduce individual thermal parameters, particularly as the reliability factor had dropped finally to 8.9%. The structure, at this stage, may be regarded as centrosymmetric in projection.

The remaining ambiguity lay between the choice of the groups $A 2$ or $A 2 / m$. This is not an easy matter to resolve when two axes are long and the other short.

If it is $A 2$, the atoms are no longer all in particular planes characteristic of $A 2 / m$, but are slightly displaced from them. Fourier analysis of the 0 kl data would be of little use as the a axis is large, and considerable overlap would occur.

Comparison between F_{o} and F_{c} for the $h 1 l$ reflexions based upon $A 2 / m$ gave a discrepancy of $15 \cdot 6 \%$. Several attempts were made to improve this by trial and error. The introduction of y parameters for some,

Table 2. Interatomic distances

	No.	Length		No.	Length
$M e_{1}-\mathrm{O}_{1}$	2	$1.90 \AA$	$\mathrm{O}_{8}-\mathrm{O}_{9}$	2	2.77 A
$\mathrm{Me} \mathrm{l}_{1}-\mathrm{O}_{2}$	2	1.94	$\mathrm{O}_{8}-\mathrm{O}_{10}$	2	2.58
$\mathrm{Me} \mathrm{e}_{1}-\mathrm{O}_{4}$	2	$2 \cdot 07$	$\mathrm{O}_{9}-\mathrm{O}_{10}$	1	$2 \cdot 98$
$\mathrm{O}_{1}-\mathrm{O}_{2}$	4	$2 \cdot 70$			
$\mathrm{O}_{1}-\mathrm{O}_{4}$	4	$2 \cdot 82$	$\mathrm{Me} \mathrm{e}_{4}-\mathrm{O}_{5}$	1	1.64 A
$\mathrm{O}_{2}-\mathrm{O}_{4}$	2	$2 \cdot 86$	$\mathrm{Me}_{4}-\mathrm{O}_{8}$	1	$2 \cdot 16$
$\mathrm{O}_{2}-\mathrm{O}_{4}^{1}$	2	$2 \cdot 79$	$\mathrm{Me} \mathrm{4}_{4}-\mathrm{O}_{9}$	1	1.86
			$M e_{4}-\mathrm{O}_{10}$	2	2.08
$\mathrm{Me} \mathrm{e}_{2}-\mathrm{O}_{2}$	1	$1.85 \AA$	$\mathrm{Me} \mathrm{4}_{4}-\mathrm{O}_{11}$	1	2.09
$\int \mathrm{Me} \mathrm{e}_{2}-\mathrm{O}_{3}$	1	2.04	$\mathrm{O}_{5}-\mathrm{O}_{11}$	1	$2 \cdot 69$
$\left\{\mathrm{Me}_{2}-\mathrm{O}_{3}^{1}\right.$	2	$2 \cdot 01$	$\mathrm{O}_{5}-\mathrm{O}_{10}$	2	2.88
$M e_{2}-\mathrm{O}_{5}$	1	$2 \cdot 16$	$\mathrm{O}_{5}-\mathrm{O}_{9}$	1	$2 \cdot 68$
$M e_{2}-\mathrm{O}_{6}$	1	2.08	$\mathrm{O}_{8}-\mathrm{O}_{9}$	1	2.93
$\mathrm{O}_{2}-\mathrm{O}_{6}$	1	$2 \cdot 80$	$\mathrm{O}_{8}-\mathrm{O}_{10}$	2	2.58
$\left\{\mathrm{O}_{3}-\mathrm{O}_{6}\right.$	1	$2 \cdot 86$	$\mathrm{O}_{8}-\mathrm{O}_{11}$	1	$2 \cdot 60$
$\mathrm{O}_{3}^{1}-\mathrm{O}_{6}$	2	$2 \cdot 59$	$\mathrm{O}_{9}-\mathrm{O}_{10}$	2	$3 \cdot 20$
¢ $\mathrm{O}_{3}-\mathrm{O}_{5}$	1	$2 \cdot 96$	$\mathrm{O}_{10}-\mathrm{O}_{11}$	2	$2 \cdot 36$
$\left\{\mathrm{O}_{3}^{1}-\mathrm{O}_{5}\right.$	2	$3 \cdot 00$			
$\mathrm{O}_{2}-\mathrm{O}_{5}$	1	$2 \cdot 87$	$M e_{5}-\mathrm{O}_{6}$	1	1.71 A
$\mathrm{O}_{2}-\mathrm{O}_{3}$	2	3.14	$\left\{\mathrm{Me}_{5}-\mathrm{O}_{7}\right.$	1	$2 \cdot 30$
$\mathrm{O}_{3}^{1} \mathrm{O}_{3}$	2	$2 \cdot 36$	($M e_{5}-\mathrm{O}_{7}^{1}$	1	1.77
			$M e_{5}-\mathrm{O}_{10}$	1	2.00
$\mathrm{Me}_{3}-\mathrm{O}_{4}$	1	1.70 §	Me ${ }_{5}-\mathrm{O}_{11}$	2	2.00
$\mathrm{Me}_{3}-\mathrm{O}_{7}$	1	$2 \cdot 14$	$\mathrm{O}_{6}-\mathrm{O}_{7}$	1	$2 \cdot 84$
$M e_{3}-\mathrm{O}_{8}$	2	$2 \cdot 00$	$\mathrm{O}_{6}-\mathrm{O}_{10}$	1	$2 \cdot 89$
$\mathrm{Me}_{3}-\mathrm{O}_{9}$	1	1.97	$\mathrm{O}_{6}-\mathrm{O}_{11}$	2	2.72
$\mathrm{Me} \mathrm{S}_{3}-\mathrm{O}_{10}$	1	$2 \cdot 34$	$\mathrm{O}_{7}-\mathrm{O}_{7}^{1}$	1	2.59
$\mathrm{O}_{4}-\mathrm{O}_{9}$	1	$2 \cdot 90$	$\mathrm{O}_{7}-\mathrm{O}_{10}$	1	$2 \cdot 52$
$\mathrm{O}_{4}-\mathrm{O}_{7}$	1	$2 \cdot 96$	\{ $\mathrm{O}_{7}-\mathrm{O}_{11}$	2	3.00
$\mathrm{O}_{4}-\mathrm{O}_{8}$	2	$2 \cdot 98$	$\left\{\mathrm{O}_{7}^{1}-\mathrm{O}_{11}\right.$	2	$2 \cdot 89$
$\mathrm{O}_{7}-\mathrm{O}_{8}$	2	$2 \cdot 78$	$\mathrm{O}_{10}-\mathrm{O}_{11}$	2	$2 \cdot 36$
$\mathrm{O}_{7}-\mathrm{O}_{10}$	1	$2 \cdot 52$			

Braces denote symmetry related pairs.
or all, of the metals in their various combinations only made matters worse, and changes from special positions, if indeed they are required, would be restricted to some of the oxygens. This proved too formidable a problem for this simple procedure, and the matter is deferred until programmes for high speed computing by least-squares are available in this country.

Table 3. Fractional atomic parameters for $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ Space group $A 2 / m\left(0,0,0 ; 0, \frac{1}{2}, \frac{1}{2}\right)+$

Atom	Point position	Ideal structure		Refined parameters	
		x / a	z / c	x / a	z / c
$M e_{1}{ }^{*}$	$2(a)$	0	0	0	0
$M e_{2}$	$4(i)$	0	$0 \cdot 200$	$0 \cdot 004{ }_{0}$	$0 \cdot 185$
Me_{3}	$4(i)$	$0 \cdot 400$	$0 \cdot 125$	$0 \cdot 365{ }_{8}$	$0 \cdot 108{ }_{6}$
$M e_{4}$	4(i)	$0 \cdot 400$	$0 \cdot 325$	$0.372{ }_{3}$	0.2946
$M e_{5}$	$4(i)$	0.600	0.083	$0 \cdot 636{ }_{9}$	0.077_{1}
O_{1}	2(c)	0	0.500	0	0.500
O_{2}	$4(i)$	0	$0 \cdot 100$	0.002	0.094
O_{3}	$4(i)$	0	$0 \cdot 300$	0.003	0.285
O_{4}	$4(i)$	0.200	0.058	0.201	0.055
O_{5}	$4(i)$	0.200	0.258	0.213	0.248
O_{6}	$4(i)$	0.800	$0 \cdot 133$	0.803	$0 \cdot 129$
O_{7}	$4(i)$	$0 \cdot 400$	0.017	0.414	0.021
O_{8}	$4(i)$	0.600	0.375	0.577	0.378
O_{9}	4(i)	$0 \cdot 400$	$0 \cdot 217$	$0 \cdot 402$	0.214
O_{10}	$4(i)$	$0 \cdot 600$	$0 \cdot 175$	0.590	$0 \cdot 158$
O_{11}	$4(i)$	$0 \cdot 400$	$0 \cdot 417$	$0 \cdot 379$	$0 \cdot 399$

* The Ti and Nb atoms occupy the metal positions at random. The symbol $M e$ represents (${ }_{3}^{\frac{1}{3}} \mathrm{Ti}+\frac{2}{3} \mathrm{Nb}$) as a single scattering unit.

With this reservation the structure is now sufficiently established to justify description. The standard deviations, assuming $A 2 / m$ are $0.025 \AA$ for the metal-oxygen distances, and $\pm 0.040 \AA$ for oxygenoxygen. Observed and calculated structure factors are given in Table 1, the interatomic distances in Table 2 and the atomic parameters in Table 3.

Discussion

The structure of $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ is illustrated in Fig. 3. The two kinds of metal atom are disordered, and as $\left(\frac{1}{3} \mathrm{Ti}+\frac{2}{3} \mathrm{Nb}\right)$ represents the average population of

Fig. 3. Structure of $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ projected on to (010). The smaller circles, filled and open, are the metals, and the larger open circles, oxygen.
any one position, the compound, in the strictest sense, is a binary oxide $\mathrm{Mo}_{3} \mathrm{O}_{7}$. The same structure could perhaps be expected in which titanium occupies sites 1 and 2, niobium the remainder. This ordered substance would undoubtedly have a unit cell almost identical in size, and could be distinguished from the present one only by minor variations of intensity in the reflexions. Attempts to prepare it by prolonged annealing at temperatures between 700 and $1000^{\circ} \mathrm{C}$., however, met with no success.

Each metal atom is co-ordinated to six oxygens forming an octahedral grouping. In the ideal structure in which no distortions occur (Table 1) the distances between the metals range from $2 \cdot 79$ to $4 \cdot 12 \AA$. There is a pronounced move towards equality in the real structure (Table 4), the shifts bringing with them considerable distortion of the oxygen framework. The octahedron centred upon $M e_{1}$ shares its six corners with adjacent octahedra, and is almost regular. The $M e_{2}$ octahedron is related by symmetry to an identical one to form a single zig-zag string, and there is now a pronounced distortion leading to a very short distance $\mathrm{O}_{3}-\mathrm{O}_{3}^{1}$ of $2 \cdot 36 \AA$.* $M e_{3}, M e_{4}$ and $M e_{5}$ form a triad of metal atoms, and the associated octahedra are even more irregular. Once again the very short distance of $2 \cdot 36 \AA$ is found, this time between O_{10} and O_{11} which are independent of one another.

Table 4. Distances between nearest neighbour metal atoms
Comparison between the ideal and the actual structures

	Nearest neighbour Atom (number and kind)	Distance		Type* of
$M e_{1}$	$2 \times M e_{2}$	$4.09 \AA$	$3.77 \AA$	A
	$2 \times M e_{3}$	4.12	3.77	A
$M e_{2}$	$1 \times M e_{2}^{\prime}$	2.79	3.28	B
	$1 \times M e_{4}$	$4 \cdot 12$	3.79	A
	$1 \times M e_{5}$	4.12	3.78	A
$M e_{3}$	$1 \times M e_{4}$	4.09	3.77	A
	$1 \times M e_{4}^{\prime}$	2.81	3.33	B
	$1 \times M e_{5}$	4.09	3.78	A
$M e_{4}$	$1 \times M e_{5}^{\prime}$	2.91	3.60	B
$M e_{5}$	$1 \times M e_{5}$	2.79	3.29	B
	$1 \times M e_{5}^{\prime}$	3.01	3.20	B

* Type A. The octahedral grouping for the neighbours have a corner (i.e. one oxygen atom) in common.
Type B. The groupings have one or more edges in common.

Although there is wide variation between metaloxygen and oxygen-oxygen distances, the average for both in any one octahedron is quite uniform. The values are $1.99 \AA$ for $M e-\mathrm{O}$, and $2.77 \AA$ for $\mathrm{O}-\mathrm{O}$, and from these the metal and oxygen 'radii' are 0.61 and $1.38 \AA$. There are very few data with which to compare these. Frevel \& Rinn (1956) found

[^1]distances 1.95 and $2.76 \AA$ between metal and anion, anion and anion respectively in $\mathrm{NbO}_{2} \mathrm{~F}$; Vousden (1951) 2.00 and $2.82 \AA$ for $\mathrm{KNbO}_{3}, 1.95$ and $2.76 \AA$ for NaNbO_{3}; Byström's (1944) data for the pyrochlor structure, based upon indirect methods, is not included.
Complex structures such as this one are not readily described in terms of the individual atoms of which they are composed; since it bears a close resemblance to those of the twoforms of $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ which are found in the system $\mathrm{TiO}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$, the three structures will be discussed together in the following paper as members of an homologous series (Wadsley, 1961).

References

Andersson, S., Collén, B., Kuylenstierna, U. \&
Magnéli, A. (1957a). Acta Chem. Scand. 11, 1641.

Andersson, S., Collén, B., Kuylenstierna, U. \& Magnéli, A. (1957b). Acta Chem. Scand. 11, 1653.
Byström, A. (1944). Ark. Kemi, Min. Geol. A, 18, No. 21. Dyson, P. (1957). Acta Cryst. 10, 140.
Frevel, L. K. \& Rinn, H. W. (1956). Acta Cryst. 9, 626.
Hägg, G. \& Magnéli, A. (1954). Revs. Pure Appl. Chem. Australia, 4, 235.
Marinder, B. O. \& Magnéli, A. (1957). Acta Chem. Scand. 11, 1635.
Qurashi, M. M. (1954). Acta Cryst. 7, 310.
Roth, R. S. \& Coughanour, L. W. (1955). J. Res. Nat. Bur. Stand. Wash., 55, 209.
Thomas, L. H. \& Umeda, K. (1957). J. Chem. Phys. 26, 293.

Viervoll, H. \& Øgrim, O. (1949). Acta Cryst. 2, 277.
Vousden, P. (1951). Acta Cryst. 4, 373.
Wadsley, A. D. (1955). Acta Cryst. 8, 695.
Wadsley, A. D. (1961). Acta Cryst. 14, 664.

Mixed Oxides of Titanium and Niobium. II. The Crystal Structures of the Dimorphic Forms of $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathbf{O}_{\mathbf{2}}$

By A. D. Wadsley
Division of Mineral Chemistry, C.S.I.R.O. Chemical Research Laboratories, G.P.O. Box 4331, Melbourne, Australia

(Received 17 August 1960)
The structure of orthorhombic $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$, which has the lattice dimensions

$$
a=28.50, b=3.805, c=20.51 \AA,
$$

space group $A m m a$, has been solved by trial and error, and refined by electron-density projections. Its monoclinic dimorph,

$$
a=15 \cdot 57, b=3.814, c=20.54 \AA ; \beta=113^{\circ} 41^{\prime}
$$

has been shown, qualitatively, to have a closely related structure. Both have features which are common to $\mathrm{TiNb}_{2} \mathrm{O}_{7}$ as well and all three can be described as members of an homologous series $M e_{3 n} \mathrm{O}_{8 n-3}$. Attempts to prepare additional homologues were not successful.

Introduction

Two intermediate phases were identified in the binary system $\mathrm{TiO}_{2}-\mathrm{Nb}_{2} \mathrm{O}_{5}$ (Roth \& Coughanour, 1955). The structure of one, $\mathrm{TiNb}_{2} \mathrm{O}_{7}$, was described in the preceding paper (Wadsley, 1961) and the second, to which the formula $\mathrm{TiO}_{2} .3 \mathrm{Nb}_{2} \mathrm{O}_{5}$ was given, is now reported in some detail. It proved to have the formula $\mathrm{Ti}_{2} \mathrm{Nb}_{10} \mathrm{O}_{29}$ and to exist in two crystalline modifications.

Experimental

Reaction in the solid state at $1400{ }^{\circ} \mathrm{C}$. between TiO_{2} and $\mathrm{Nb}_{2} \mathrm{O}_{5}$ in the molar ratio 1:3 gave $\alpha \mathrm{Nb}_{2} \mathrm{O}_{5}$ as a separate component. Roth \& Coughanour (1955) believed their formula to be uncertain, and indeed their
phase diagram suggested that it should perhaps be richer in TiO_{2}. A partial phase analysis gave the most probable formulation $2 \mathrm{TiO}_{2} .5 \mathrm{Nb}_{2} \mathrm{O}_{5}$ which was subsequently confirmed by the structure determination.

Two preparations were then made. In the first, the weighed oxides were thoroughly ground together, pelletted, and reacted in the solid state at $1400^{\circ} \mathrm{C}$. for 36 hr . Part of this was then fused in a platinum crucible and allowed to cool slowly. Debye-Scherrer patterns of these two preparations were virtually identical, but the Guinier camera disclosed small differences between them. A single crystal of the sintered preparation proved to have a large unit cell with orthorhombic symmetry. A crystal of the fused phase, free from flaws or twinning, could not be found. Nevertheless the Weissenberg photographs clearly

[^0]: * Presented originally to the Gordon Research Conference on inorganic chemistry, New Hampton, N. H. August 10-14, 1959.

[^1]: * This pair of atoms is related by the symmetry elements present in $A 2 / m$ and $A 2$. If the correct space group is $A m$, they do not have any such relationship. Evidence for this in the $F_{o}-F_{c}$ syntheses was not found.

